This thesis contains material relating to two separate subjects. The first section determines when the C*-algebra affiliated to a directed graph has continuous trace. We use groupoid methods and the focus is on producing conditions on a graph that...
This thesis constitutes the first steps in the author's program to investigate the question of when a homotopy of 2-cocycles ω = {ω[subscript t]}[subscript t∊[0,1]] on a locally compact Hausdorff groupoid Ɠ induces an isomorphism of the...
The focus of this thesis is the study of nuclearity and exactness for groupoid crossed product C*-algebras. In particular, we present generalizations of two well-known facts from group dynamical systems and crossed products to the groupoid setting....
'Orthogonal modular forms are algebraic modular forms arising from lattices in quadratic spaces. In this thesis, we define orthogonal modular forms, establish their basic properties, and then apply them to a case of ternary quadratic spaces to...
Given graded C *-algebras A and B , we define the notion of an admissible pair ([straight phi], D ) for A and B . Associated to an admissible pair ([straight phi], D ) is an equivalence class of asymptotic morphisms from A to B . Under certain...
Topological graph theory. Aperiodicity. Paths and cycles (Graph theory)
The condition ""every cycle has an entry"" first appeared in the literature in Kumjian, Pask, and Raeburn's paper on Cuntz-Krieger algebras of directed graphs, where it was called Condition (L). It provides a necessary condition for simplicity of...