This project focuses on the development of research tools and methods that are used to study the relationship between neural activity and subsequent hemodynamic responses in the human brain. This relationship, referred to as neurovascular coupling,...
This thesis constitutes the first steps in the author's program to investigate the question of when a homotopy of 2-cocycles ω = {ω[subscript t]}[subscript t∊[0,1]] on a locally compact Hausdorff groupoid Ɠ induces an isomorphism of the...
Coherent states. Quantum field theory. Nonlinear theories.
In this thesis we study the properties of time-dependent, nontopological configurations and their effect on the macroscopic properties of a system described by a nonlinear field theory. These structures seem to be ubiquitous in relativistic field...
In this thesis, we study the dynamics of magnetic flows on compact nilmanifolds. Magnetic flows are generalizations of geodesic flows. They model the motion of a particle of unit mass and unit charge in a smooth manifold M in the presence of a...
We begin with a presentation of the current state of Poljak and Turzik's conjecture that a matroid is sticky if and only if it is modular as described in [5] and [1]. We show that all graphic, cographic, and regular matroids must satisfy the...
We associate, to each positive integer n , a Cayley graph to the group PSL(2.Ζ[subscript n]). We then consider the isoperimetric numbers of these graphs. In chapter three we determine upper bounds for the isoperimetric number by a detailed...
A metric structure on a set gives a concept of distance between any two elements of that set, and it induces a topology. In this thesis, we provide several ways to put a metric structure on the collection of CW complexes. We accomplish this by...