Manifolds (Mathematics) Geodesics (Mathematics) Space and time.
We investigate weak and strong refocusing of light rays in a space-time and related concepts. A strongly causal space-time ( X^ n +1 , g ) is emphstrongly refocusing at x ∈ X if there is a point y ≠ x such that all null-geodesics through y pass...
Constructibility (Set theory). Trees (Graph theory).
This thesis investigates possible initial segments of the degrees of constructibility. Specifically, we completely characterize the structure of degrees in generic extensions of the constructible universe L via forcing with Souslin trees. Then we...
This thesis contains material relating to two separate subjects. The first section determines when the C*-algebra affiliated to a directed graph has continuous trace. We use groupoid methods and the focus is on producing conditions on a graph that...
This thesis constitutes the first steps in the author's program to investigate the question of when a homotopy of 2-cocycles ω = {ω[subscript t]}[subscript t∊[0,1]] on a locally compact Hausdorff groupoid Ɠ induces an isomorphism of the...
We prove the existence of nontrivial multiparameter isospectral deformations of metrics on the classical compact simple Lie groups SO (n) (n = 9, n ≥11), Spin(n) (n = 9, n ≥11), SU (n) (n ≥7), and Sp (n) (n ≥5). The proof breaks into three...
Motivated by quantum mechanics and geometric optics, it is a long-standing problem whether the length spectrum of a compact Riemannian manifold can be recovered from its Laplace spectrum. One route to proving that the length spectrum depends on the...
In this thesis, we study the dynamics of magnetic flows on compact nilmanifolds. Magnetic flows are generalizations of geodesic flows. They model the motion of a particle of unit mass and unit charge in a smooth manifold M in the presence of a...
'Orthogonal modular forms are algebraic modular forms arising from lattices in quadratic spaces. In this thesis, we define orthogonal modular forms, establish their basic properties, and then apply them to a case of ternary quadratic spaces to...
Spectral theory is the subfield of differential geometry which provided the solution to Kac''s famous question, "Can you hear the shape of a drum?" That is, can we use the Laplace spectrum of a manifold to draw conclusions about its geometry or...
Nuclear magnetic resonance spectroscopy -- Data processing. ; Proteins -- Analysis -- Mathematical models. ; Computer algorithms.
Our aim is to enhance high-throughput applications of Nuclear Magnetic Resonance (NMR) through the development of efficient computational methods that operate on sparse (minimal) sets of experimental NMR data. We have developed a family of four...
In this thesis we review the methods for computation of cosmological correlations in the early universe known as the in-in formalism which are then applied to the problem of magnetogenesis from inflation. For this computation, a power-law single...
Riemannian manifolds. Singularities (Mathematics). Laplacian operator. Spectral theory (Mathematics). Riemann surfaces. Curves on surfaces. Geometry
Historically, inverse spectral theory has been concerned with the relationship between the geometry and the spectrum of compact Riemannian manifolds, where spectrum means the eigenvalue spectrum of the Laplace operator as it acts on smooth...
This thesis contains some results concerning groupoid dynamical systems and crossed products. We introduce the notion of a proper groupoid dynamical system and of its generalized fixed point algebra. We show that our notion of proper groupoid...
Topological graph theory. Aperiodicity. Paths and cycles (Graph theory)
The condition ""every cycle has an entry"" first appeared in the literature in Kumjian, Pask, and Raeburn's paper on Cuntz-Krieger algebras of directed graphs, where it was called Condition (L). It provides a necessary condition for simplicity of...
Oligomers -- Structure -- Mathematical models. Nuclear magnetic resonance spectroscopy.
Medical Term: Nuclear Magnetic Resonance, Biomolecular.
Protein complexes play vital roles in the fundamental processes of life. In particular, homo-oligomers are involved in cell signaling, regulation, and transport. To make detailed studies of these symmetric proteins, they need to be discovered, and...
This thesis investigates the embedding theory of orders in central simple algebras, placing a particular emphasis on the role that the phenomenon known as selectivity plays in the theory. Although the notion of selectivity is completely algebraic,...