Motivated by quantum mechanics and geometric optics, it is a long-standing problem whether the length spectrum of a compact Riemannian manifold can be recovered from its Laplace spectrum. One route to proving that the length spectrum depends on the...
In the late 1960s, Ihara began work that led to the Ihara zeta function, a zeta function which is defined on a finite graph. This function is an interesting graph invariant which gives information on expansion properties of the graph. It also...
Riemannian manifolds. Singularities (Mathematics). Laplacian operator. Spectral theory (Mathematics). Riemann surfaces. Curves on surfaces. Geometry
Historically, inverse spectral theory has been concerned with the relationship between the geometry and the spectrum of compact Riemannian manifolds, where spectrum means the eigenvalue spectrum of the Laplace operator as it acts on smooth...
This thesis investigates the embedding theory of orders in central simple algebras, placing a particular emphasis on the role that the phenomenon known as selectivity plays in the theory. Although the notion of selectivity is completely algebraic,...
We prove the existence of nontrivial multiparameter isospectral deformations of metrics on the classical compact simple Lie groups SO (n) (n = 9, n ≥11), Spin(n) (n = 9, n ≥11), SU (n) (n ≥7), and Sp (n) (n ≥5). The proof breaks into three...
Spectral theory is the subfield of differential geometry which provided the solution to Kac''s famous question, "Can you hear the shape of a drum?" That is, can we use the Laplace spectrum of a manifold to draw conclusions about its geometry or...