This thesis contains material relating to two separate subjects. The first section determines when the C*-algebra affiliated to a directed graph has continuous trace. We use groupoid methods and the focus is on producing conditions on a graph that...
This thesis constitutes the first steps in the author's program to investigate the question of when a homotopy of 2-cocycles ω = {ω[subscript t]}[subscript t∊[0,1]] on a locally compact Hausdorff groupoid Ɠ induces an isomorphism of the...
The focus of this thesis is the study of nuclearity and exactness for groupoid crossed product C*-algebras. In particular, we present generalizations of two well-known facts from group dynamical systems and crossed products to the groupoid setting....
We prove the existence of nontrivial multiparameter isospectral deformations of metrics on the classical compact simple Lie groups SO (n) (n = 9, n ≥11), Spin(n) (n = 9, n ≥11), SU (n) (n ≥7), and Sp (n) (n ≥5). The proof breaks into three...
In this thesis, we study the dynamics of magnetic flows on compact nilmanifolds. Magnetic flows are generalizations of geodesic flows. They model the motion of a particle of unit mass and unit charge in a smooth manifold M in the presence of a...
For a local field K, we study the affine buildings Ξ n and Δ n naturally associated to SL n ( K ) and Sp n ( K ), respectively. Since Sp n ( K ) is a subgroup of SL 2 n ( K ), we investigate properties of a natural embedding of Δ n in Ξ 2 n ....