Constructibility (Set theory). Trees (Graph theory).
This thesis investigates possible initial segments of the degrees of constructibility. Specifically, we completely characterize the structure of degrees in generic extensions of the constructible universe L via forcing with Souslin trees. Then we...
In the late 1960s, Ihara began work that led to the Ihara zeta function, a zeta function which is defined on a finite graph. This function is an interesting graph invariant which gives information on expansion properties of the graph. It also...
The study of twin primes gives rise to several famously difficult problems in number theory--in fact, we still cannot definitively say whether there are infinitely many twin primes. In this work, we consider a related problem, namely: What is the...
For a local field K, we study the affine buildings Ξ n and Δ n naturally associated to SL n ( K ) and Sp n ( K ), respectively. Since Sp n ( K ) is a subgroup of SL 2 n ( K ), we investigate properties of a natural embedding of Δ n in Ξ 2 n ....
I consider the problem of extending certain invariants of subsets of natural numbers to their equivalents for subsets of larger cardinals. The two specific questions I will address are the extension of the off-branch number [Special characters...